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15.0 OBJECTIVES

After studying this unit, you should be able to:

l estimate population characteristics (parameters) on the basis of a sample,

l get familiar with the criteria of a good estimator,

l differentiate between a point estimator and an interval estimator,

l comprehend the concept of statistical hypothesis,

l perform tests of significance of population mean and population proportion,
and

l make decisions on the basis of testing hypothesis.

15.1 INTRODUCTION

Let us suppose that we have taken a random sample from a population with a
view to knowing its characteristics, also known as its parameters. We are then
confronted with the problem of drawing inferences about the population on the
basis of the known sample drawn from it. We may look at two different
scenarios. In the first case, the population is completely unknown and we would
like to throw some light on its parameters with the help of a random sample
drawn from the population. Thus, if µ denotes the population mean, then we
intend to make a guess about it on the basis of a random sample. This is
known as estimation. For example, one may be interested to know the average
income of people living in the city of Delhi or the average life in burning hours
of a fluorescent tube light produced by �Indian Electrical� or proportion of
people suffering from T.B. in city �B� or the percentage of smokers in town
�C� and so on.

A somewhat different situation may arise when some information about a
parameter is either known or specified and we would like to verify whether
that information holds good for the sample drawn from the population as well.
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This is known as  problem of testing of hypothesis. In the previous examples,
we may be interested of in testing whether the average income in the city of
Delhi is, say, Rs. 2,000 per month. In the second example, we may like to
verify whether the claims made by Indian Electrical, that their fluorescent lamps
would last 5,000 hours, is justified. Some social workers may believe that 20%
of the population in city B suffers from T.B. We would like to make our
comment after a test of hypothesis. In the last example, some human activists,
concerned about the hazards of passive smoking, assert that 30% of the people
staying in town C are smokers. We may share their opinion once we have
satisfied ourselves after peforming a statistical test of hypothesis.

It may be noted that testing of hypothesis plays a vital role in decision-making.
In the first example, the statistician may be concerned about whether to bracket
Delhi with the top metropoliton cities depending on the average income based
on his/her recommendations. If on the basis of a statistical test, it is found that
the claim made by the manufacturer of India Electrical is justified, then the
sales of his lamps would  increase. In the third example if there is evidence,
again on the basis of testing hypothesis, that the social worker is right about his
statement, suitable steps may be undertaken to improve the living conditions of
the marginalized section in the city so that the percentage of people suffering
from T.B. is reduced. Some strict legislation banning smoking or reducing
smoking to a desirable level may be enacted on the basis of a hypothesis tested
in the last example.

15.2 POINT ESTIMATION AND STANDARD
ERRORS

Estimation is an integral part of our daily lives. In order to construct a new
house or renovate an old house or flat, we demand an estimate of the cost
involved. A student estimates his/her chance of success before appearing for an
expensive competitive examination.

Now we shall consider estimation from the viewpoint of a statistician. As we
discussed in Unit 4: sampling, is the means to find the true value of the
parameter which can be correctly obtained only through census study. In many
cases it is not practicable due to various constraints. Therefore, the alternative
approach is to select some items as a sample from the population and collect
the data and analyse the data, then estimate the chracteristics of the population.
This is called  estimation. Point estimate is one type of estimate. It is a single
number which is used as an estimate of the unknown population parameter. Let
us assume that we have taken a random sample of n observations, x1, x2,
x3�xn, from a population characterized by a parameter θ (read theta). This
symbol θ is used to denote a parameter that could be mean, mode or some
measure of variation etc. Thus θ may be the mean (µ)of a normal distribution
or the probability of success (P) of a binomial distribution with parameters �n�
and �p� and so on. In theory of estimation, we try to find a statistic (i.e., a
function of sample observations) T which estimates the unknown parameter θ.
Thus the sample mean n/x)x( i∑= , x1, x2, x3 �xn being the income per
month of �n� persons selected at random from the city of Delhi, may be
considered to be the estimate of the average income per month (µ) of the
people of Delhi.
This is denoted by x� =µ  i.e., the estimate of µ is x .
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To be more precise, x  is known as a point estimator of µ as we try to
estimate the population mean (µ) by a single value, namely, the sample mean.
On the basis of a random sample of incomes from Delhi, if it is found that the
sample mean is Rs. 2,000/-, then one may conclude that the estimate of
average income per month of the people living in that city is Rs. 2,000/-.

As opposed to a point estimate, one may think of an interval estimate that is
supposed to contain the average income of the people of Delhi per month. This
would be discussed in Section 15.3.

At this juncture, we must make a distinction between the two terms Estimator
and estimate. �T� is defined to be an estimator of a parameter θ, if T esimtates
θ. Thus T is a statistic and its value may differ from one sample to another
sample. In other words, T may be considered as a random variable. The
probability distribution of T is known as sampling distribution of T. As already
discussed, the sample mean x  is an estimator of population mean µ. The value
of the estimator, as obtained on the basis of a given sample, is known as its
estimate. Thus x  is an estimator of µ, the average income of Delhi, and the
value of x  i.e., Rs. 2,000/-, as obtained from the sample, is the estimate of µ.

Selection of the best estimator: Our next endeavour would be to discuss
different criteria for selecting the best estimator.

Unbiasedness and Minimum Variance: A statistic T is defined to be
unbiased for a parameter θ if expectation of T is θ, i.e., E(T) = θ. On the
other hand if E(T) = θ + a (θ), then the difference a (θ) = E(T) � θ is known
as bias. The bias is known to be positive if a (θ) > 0 and negative if a (θ) <
0. Our first priority would be to select an unbiased estimator of θ. However,
there may be many unbiased estimators of θ. If x1, x2 �, xn denote n sample
observations from a population with an unknown parameter θ, then any of the n
observations or any linear function of them would be an unbiased estimator of θ.

In order to choose the best estimator among these estimators along with
�unbiasedness�, we introduce a second criterion, known as, minimum variance.
A statistic T is defined to be a minimum variance unbiased estimator (MVUE)
of θ if T is unbiased for θ and T has minimum variance among all the
unbiased estimators of θ. We may note that sample mean ( x ) is an MVUE for
µ.

We know that 
n
xx i∑

= �(15.1)
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Hence )x( is an unbiased estimator of µ.

[x1, x2, �xn are taken from population having as
µ population mean]
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Further, variance of )x( is given by :

)n/x(v)x(v i∑=  (where v denotes variance)

      = ∑ )]x(v.[
n i2

1
Since xi

1s are independent

      ∑ σ= 2
2n

1
 = [where σ2 is population variance]

      = ]n.[
n
1 2
2 σ   =  

n

2σ
��(15.2)

It can be proved that v ( x ) has the minimum variance among all the unbiased
estimators of µ.

Consistency: If T is an estimator of θ, then it is obvious that T should be in
the neighbourhood of θ. T is known to be consistent for θ, if the difference
between T and θ can be made as small as we please by increasing the sample
size n sufficiently.

We can further add that T would be a consistent estimator of θ if

i) E (T) → θ and

ii) V (T) → 0 for a very large n i.e., as n → ∝

For example, sample mean )x( is a consistent estimator of µ as E )x( = µ

And V ∝→→
σ

= nas0
n

)x(
2

.

It may be noted that if T is a consistent estimator of θ, then any function of T
is also a consistent estimator of θ.

Efficiency: A statistic T is called as an efficient estimator of θ if it has the
minimum standard error among all the estimators of θ for a fixed sample size
n. Both the sample mean and sample median are consistent estimators for µ.
But standard error (a term, to be defined and explained in this section) of
sample mean is less than that of sample median. Hence sample median is only
a consistent estimator of µ, whereas sample mean is both consistent and
efficient estimator of µ.

Sufficiency: A statistic T is known to be a sufficient estimator of θ if T
contains  sufficient information about θ so that we do not have to look for any
other estimator of θ. Sample mean ( x ) is a sufficient estimator of µ.

Now let us consider the following point estimates that are commonly used.

A)   Estimating Population Mean: It is obvious that sample mean is the best
estimator of population mean µ. It is an MVUE. It is both consistent and
efficient estimator for µ. Further more, x  is a sufficient estimator for µ. Thus
we estimate the average income of the people of Delhi by the sample mean or
the average life of bulbs, manufactured by Indian Electricals, by the
corresponding sample mean.

B)  Estimating Population Proportion: If a discrete random variable x
follows binomial distribution with parameters n and P, then we have

µ = E(x) = nP

σ 2 = v(x) = nP (1�p)

[n denoting the number of trials and P denoting the probability of a success].
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Hence, it follows that :

P
n

nP
n
xE)p(E i ==






= �(15.3)

and V (p)= V (xi/n) = 2
i

n
)x(V

      = 2n
)P1(nP −

      = 
n

)P1(P −
�(15.4)

Thus if we take a random sample of size �n� from a population where the
proportion of population possessing a certain characteristic is �P� and the
sample contains x units possessing that characteristic, then an estimate of
population proportion (P) is given by:

n
xP� = �(15.5)

In other words, the estimate of the population proportion is given by the

corresponding sample estimate i.e., pP� = �(15.6)

From (15.3) E {p} = P

So p is an unbiased estimator of P. It can be shown that p has the minimum
variance among all the unbiased estimators of p. In other words, p is an
MVUE of P.

→∝→
−

= nas0
n

)P1(P)p(vAs

it follows from Eq. (15.4) that p is a consistent estimator of P. We can further
establish that p is an efficient as well as a sufficient estimator of P. Thus we
advocate the use of sample proportion to estimate the population proportion as
p which satisfies all the desirable properties of an estimator.

In order to estimate the proportion of people suffering from T.B. in city B, if
we find the number of people suffering from T.B. is �x� in a random sample of
size �n�, taken from city B, then sample estimate p = x/n would provide the
estimate of the proportion of people in that city suffering from T.B. Similarly,
the percentage of smokers as found from a random sample of people of town
C would provide the estimate of the percentage of smokers in town C.

C)  Estimation of Population Variance and Standard Error: Standard error
of a statistic T, to be denoted by S.E. (T), may be defined as the standard
deviation of T as obtained from the sampling distribution of T. In order to
compute the standard error of sample mean, it may be noted that from Eq.

(15.2) n
)x(.E.S σ

=  for simple random sampling with replacement (SRSWR).

1N
N

n
)x(.E.S

−
η−σ

=  for simple random sampling without replacement

(SRSWOR)].

where σ is the population standard deviation (S.D.), n is sample size, N is

population size and the factor 
1N

N
−

η−
is known as finite population corrector
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(f.p.c.) or finite population multiplier (f.p.m.) which may be ignored for a large
population.

In order to find S.E., it is necessary to estimate σ 2 or σ in case it is unknown.
If x1, x2 �, xn denote n sample observations drawn from a population with
mean µ and variance σ 2, then the sample variance:

n
)xx(S

2
i2 ∑ −

= �(15.7)

may be considered to be an estimator of σ 2

Since E(x) = µ and V ( z/ ) = E (x�µ)2 = σ2 �(15.8)

We have

∑ −= 2
i

2 )xx(ns �(from 15-8)
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i )]x()x[(
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i

2
i

    = ∑ ∑ µ−+µ−µ−−µ− 2
i

2
i )x(n)x()x(2)x(

    = ∑ µ−+µ−µ−−µ− 22
i )x(n)x(n).x(2)x(

[since Σ (xi�µ) = Σ xi � Σµ

= µ− nxn  = )]x(n µ−

    = ∑ µ−+µ−−µ− 222
i )x(n)x(n2)x(

    = ∑ µ−+µ− 22
i )x(n)x( �(15.9)

As xi is the ith sample observation from a population with µ as mean and σ2

as variance, it follows that :

E (xi�µ)2 = σ2

And
n

)x(v)x(E
2

2 σ
==µ− �(15.10)

From (15-9), E (ns2) = ∑ −−µ− 22
i )ux(E.n)x(E

= ∑
σ

−σ
n

.n
2

2  =  22n σ−σ   =  (n�1) σ2

22

n
1n)S(E σ

−
=∴ ≠ σ2 �(15.11)

Hence S2, the sample variance, is a biased estimator of σ2.

As 22 σ
n

1n)S(E −
=

22s
1n

nE σ=




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

−
∴ �(15.12)
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1n
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n
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−
−

=
−

∑
is an unbiased estinator of σ2 �(15.13)
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so, we use  
1n

)xx()s(
2
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=
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 as an estimator of σ2 and

1n
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2
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−
−

=
∑

as an estimator of σ

An estimate of S.E. )x( is given by:

n
S)x(.E.S

|
=  for SRSWR

= 1N
nN

n
S|

−
−

 for SRSWOR ��(15.14)

From (15.4), it follows that 
n

)P1(P)p(v −
=

n
)P1(P

)p.(E.S
−

= for SRSWR

1N
nN.

n
)P1(P

−
−−

=  for SRSWOR ��(15.15)

An estimate of standard error of sample proportion is given by:

n
)p1(p)p(.E.S −

= for SRSWR

= 
n

nN.
n

)p1(p −−
for SRSWOR ��(15.16)

Let us consider the following illustrations to estimate variance from sample and
also estimate the standard error.

Illustration 1

A sample of 32 fluorescent lights taken from Indian Electricals was tested for
the lives of the lights in burning hours. The data are presented below:

Table 15.1: The Lives in Hours of 32 Lights

Sl. Life Sl. Life Sl. Life
No. (Hours) No. (Hours) No. (Hours)

1 4895 12 4992 23 4987
2 4907 13 4997 24 5021
3 5013 14 5003 25 5009
4 4996 15 4985 26 5016
5 5015 16 5015 27 5019
6 4899 17 5317 28 4903
7 4723 18 4990 29 4925
8 4968 19 4989 30 4972
9 5023 20 4923 31 5009
10 5021 21 4946 32 4998
11 5015 22 5024

Solution: We are interested in estimating the average life of fluorescent lights
manufactured by Indian Electricals. As discussed in this section, the estimate of
the population mean (µ) is given by the corresponding sample mean. Then

>
>
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x� =µ . If we are further interested in estimating the standard error of x , then
we are to compute

n
s)x.(E.S

|
=

where, 1n
xnx

1
)xx(s

22
i

2
i|

−
−

=
−η
−

=
∑∑

and ,
n
xx i∑

=  n = Sample size

We ignore f.p.c. as the population of lights is very large.

Table 15.2: Computation of sample mean and sample S.D.

Life in Hours ui = xi–5000 ui
2

      xi

4895 �105 11025

4907 �93 8649
5013 13 169
4996 �4 16
5015 15 225
4899 �101 10201
4723 �277 76729
4968 �32 1024
5023 23 529
5021 21 441
5015 15 225
4992 �8 64
4997 �3 9
5003 3 9
4985 �15 225
5015 15 225
5317 317 100489
4990 �10 100
4984 �16 256
4923 �77 5929
4946 �54 2916
5024 24 576
4987 �13 169
5021 21 441
5009 9 81
5016 16 256

>
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5019 19 361
4903 �97 9409
4925 �75 5625
4972 �28 784
5009 9 81
4998 �2 4

Total –490 237242

From the above Table, ∑∑ =−= 237242u,490u 2
ii

3125.15
32
490

32
uu i −=

−
==∴

∑

As 5000xu ii −=

5000xu −=∴

Or, 4985)elyapproximat(6875.4984u5000X =+=

9316.7410
31

1248.750323742
1n

unu)s()s()s(
22

i2|2
x

|2| =
−

=
−
−

=== ∑

0868.86s| =∴

hence 2183.15
32
0868.86

n
s)x.(E.S

|

===

so the estimate of the average life of lights as manufactured by Indian
Electricals is 4985 hours. Estimate of the population variance in 7410.9316
(hours)2 and the standard error is 15.2183 hours.

Illustration 2

A sample  of 350 people from city C contained 70 smokers. Find an estimate
of the proportion of smokers in the city. Also find an estimate of the standard
error of the proportion of smokers in the sample.

Solution: In this case x = no. of smokers in the sample = 70, n = 350.

Thus we have 2.0
350
70

n
xp ===

Hence the estimate of the proportions of smokers in the city is 0.2 or 20%.

Further

0214.0
350

)2.01(2.0
n

)p1(p)p(.E.S =
−

=
−

=

∴  The estimate of the standard error of the proportion of smokers in the
sample is 0.0214.

>
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Self Assessment Exercise A

1) State, with reasons, whether the following statements are true or false.

a) Both the statistic and parameter are functions of sample observations.

b) Any type of sampling would lead to the same inference about the population.

c) Statistical inference is a statistical process to know about a population from
the knowledge of a sample drawn from it.

d) Any type of estimator can be used for estimating a parameter.

e) In most cases, decision-making depends on estimation.

f) There may be more than one estimator for a parameter.

g) Assumption of normality is a must for point estimation.

h) Every consistent estimator is necessarily an efficient estimator.

i) A consistent estimator approaches the parameter with an increase in sample
size.

j) Point estimator is used as an estimate of the unknown population parameter.

2) Differentiate between estimator and estimate.

..............................................................................................................

.............................................................................................................

3) In choosing between sample mean and sample median � which one would you
prefer?

..............................................................................................................

.............................................................................................................

4) The monthly earnings of 20 families, obtained from a random sample from a
village in West Bengal are given below:

Sl. Monthly earnings (Rs.) Sl. Monthly earnings (Rs.)
No. No.

1 1023 11 1012

2 976 12 998

3 898 13 1015

4 1012 14 989

5 980 15 923

6 963 16 767

7 1023 17 897

8 946 18 1013

9 1007 19 947

10 977 20 958

Find an estimate of the average monthly earnings of the village. Also obtain an
estimate of the S.E. of the sample estimate.

..............................................................................................................
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.............................................................................................................

..............................................................................................................

.............................................................................................................

..............................................................................................................

5) In a sample of 900 people, 429 people are found to be consumers of tea. Estimate
the proportion of consumers of tea in the population. Also find the corresponding
standard error.

   .............................................................................................................

..............................................................................................................

.............................................................................................................

6) Obtain an unbiased estimate of population mean and population variance on the
basis of the following sample observations:

50,   46, 52, 53, 45, 43, 46, 48, 51

.................................................................................................................

.................................................................................................................

..................................................................................................................

15.3 INTERVAL ESTIMATION

This is another type of estimation. As opposed to estimating a parameter by a
single value i.e., point estimation discussed in the previous section, we may
think of an interval or a range of values that is supposed to contain the
parameter. An interval estimate would always be specified by two values i.e.,
the lower value and the upper value, within which the parameter lies. This is
known as Interval Estimation. Thus interval estimation may be defined as
estimating an interval to which the unknown parameter θ may belong, in all
likelihood.

Regarding the estimation of the average income of the people of Delhi city, one
may argue that it would be better to provide an interval which is likely to
contain the population mean. Thus, instead of saying the estimate of the
average income of Delhi is Rs. 2,000/-, we may suggest that, in all probability,
the estimate of the average income of Delhi would be from Rs. 1,900/- to Rs.
2,100/-. In the second example of estimating the average life of lights produced
by Indian Electricals where the estimate came out to be 4985 hours, the point
estimation may be a bone of contention between the producer and the potential
buyer. The buyer may think that the average life is rather less than 4985 hours.
An interval estimation of the life of lights might satisfy both the parties. Figure
15.1 shows some intervals for θ on the basis of different samples of the same
size from a population characterized by a parameter θ. A few intervals do not
contain θ.
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Fig.15.1: Confidence Intervals to θ θ θ θ θ

15.4 CONFIDENCE LIMITS, CONFIDENCE
INTERVAL AND CONFIDENCE CO-EFFICIENT

Let us assume that we have taken a random sample of size �n� from a
population characterized by a parameter θ. Let us further suppose that based
on these sample observations, it is possible to find two statistics t1 and t2 such
that:

P (t1 < θ) = α1

And P (t2 > θ) = α2

Where α1 and α2 are two small positive numbers. Combining these two
conditions, we may write:

P (t1 ≤ θ  ≤ t2) = 1�α �(15.17)

Where α = α1 + α2

Equation (15.17) could be interpreted as the probability that θ lies between t1
and t2 is (1�α), whatever may be the value of θ, satisfying (15.17). The
interval [t1, t2], t1 being less than t2, that contains the parameter θ is known
Confidence Interval to θ, t1 being known as Lower Confidence limit and t2 as
Upper Confidence Limits. (1�α) is known to be Confidence Co-efficient
corresponding to the confidence interval [t1, t2].

One may like to know why the term �confidence� comes into the picture. If we
choose α1 and α2 such a way that α = 0.01, then the probability that θ would
belong to the random interval [t1, t2] is 0.99. In other words, one feels 99%
confident that [t1, t2] would contain the unknown parameter θ. Similarly if we
select α = 0.05, then P [t1 ≤ θ ≤ t2] = 0.95, thereby implying that we are 95%
confident that θ lies between t1 and t2. (15.17) suggests that as α decreases,
(1�α) increases and the probability that the confidence interval [t1, t2] would
include the parameter θ also increases. Hence our endeavour would be to
reduce �α� and thereby increase the confidence co-efficient (1�α).

θ



Tests of Hypothesis–I

6 7

Referring to the estimation of the average life of lights (θ), if we observe that
θ lies between 4935 hours and 5035 hours with probability 0.98, then it would
imply that if repeated samples of a fixed size (say n = 32) are taken from the
population of lights, as manufactured by Indian Electricals, then in 98 per cent
of cases, the interval [4935 hours, 5035 hours] would contain θ, the average life
of lights in the population while in 2 per cent of cases, the interval would not
contain θ. In this case, the confidence interval for θ is [4935 hours, 5035
hours]. Lower Confidence Limit of θ is 4935 hours, Upper Confidence Limit of
θ is 5035 hours, and the Confidence Co-efficient is 98 per cent.

Selection of Confidence Interval

Our next task would be to select the basis for estimating confidence interval.
Let us assume that we have taken a random sample of size �n� from a normal
population characterized by the two parameters µ and σ, the population mean
and standard deviation respectively. Thus, in the case of estimating a
Confidence Interval for average income of people dwelling in Delhi city, we
assume that the distribution of income is normal and we have taken a random
sample from the city. In another example concerning average life of fluorescent
lights as produced by Indian Electricals, we assume that the life of a
fluorescent light is normally distributed and we have taken a random sample
from the population of fluorescent lights manufactured by Indian Electricals.

Figure 15.2 shows percentage of area under Normal Curve. It can be shown
that if a random sample of size �n� is drawn from a normal population with
mean �µ� and variance σ2, then )x( , the sample mean also follows normal
distribution with �µ� as mean and σ2/n as variance. Further as we have
observed in Section 15.2.

n
)x(.E.S σ

=

From the properties of normal distribution, it follows that the interval :

)]x(.E.S),x(.E.S[ +µ−µ covers 68.27% area.

The interval )]x.(E.S2),x(.E.S2[ +µ−µ covers 95.45% area and the interval

)]x(.E.S3),x(.E.S3[ +µ−µ covers 99.73% area. Figure 15.2 depicts this
information.

Fig. 15.2: Percentages of Area under a Normal Curve
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Now let us consider a situation where the assumption of normality may not
hold. If the sample size is large enough, then the sample mean x follows
approximately, i.e., asymptotically normal distribution with mean as µ and
standard error as σ/ n , µ and σ being the mean and S.D. of the population
under consideration. In case σ is unknown, we can replace it by the
corresponding sample standard deviation. One may ask the question as to how
large �n� should be. It is rather difficult to specify an exact value of �n� so that
the distribution of x would be asymptotically normal. Larger the value of �n�,
the better. However for practical purposes, if �n� exceeds 30, then we may
assume that x  is asymptotically normal.
Our next question may be what would be the confidence interval for µ.

Will it be ),x(.E.S3or),x(.E.S2or),x(.E.S ±µ±µ±µ or some other interval?

Suppose that the Confidence Interval to µ is given by :

)x(.E.Su±µ and we are to determine u such that :

α−=×+≤µ≤×− 1)]x(.E.Sux)x(.E.Sux[P ��(15.18)

Or, α−=≤
µ−

≤− 1]u
)x(.E.S

xu[P

Or, α−=≤≤− 1]uZu[P [where )x(.E.S
xZ µ−

= is a standard normal variable]

Or. φ  (u) � φ (� u) = 1�α [where φ (K) = P(Z ≤ K), area under
standard normal curve from � ∝ to K].

Or, α−=φ−−φ 11 )u([)u(

Or. α−=φ 22 )u(

Or. )/()u( 21 α−=φ �(15.19)

Putting α = 0.10 in (15.19), we get

9500501 ..)u( =−=φ

or, ).()u( 6451φ=φ

or. u = 1.645

Thus 100 (1�α) % or 100 (1�0.1)% or 90% confidence interval to population
mean µ is :

Given by 







+−

n
σ645.1X,

n
σ645.1X

Putting α =0.05, 0.02 and 0.01 respectively in (15.19) and proceeding in a similar

manner, we get 95% Confidence Interval to µ = 






 σ
+

σ
−

n
96.1x,

n
96.1x  �(15.20)

98% Confidence Interval to µ = 






 σ
+

σ
−

n
33.2x,

n
33.2x �(15.21)
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Fig. 15.3: 95% Confidence Interval for Population Mean

95% of area  under curve

2.5% of  area
under curve

2.5% of  area
under curve

x
n
σ96.1x −

n
σ96.1x +

99% of area  under curve
0.5% of  area
under curve

0.5% of  area
under curve

x
n
σ58.2x −

n
σ58.2x +

and 99% Confidence Interval to µ = 






 σ
+

σ
−

n
58.2x,

n
58.2x �(15.22)

Theoretically we may take any Confidence interval by choosing �u� accordingly.
However in a majority of cases, we prefer 95% or 99% Confidence Interval.
These are shown in Figure 15.3 and Figure 15.4 below.

Fig. 15.4: 99% Confidence Interval for Population Mean

Next we consider Interval Estimation in the following cases:

Interval Estimation of Population Mean

As suggested in this section under assumption of normality, 95% confidence
interval to µ, the population mean, is given by








 σ
+

σ
−

n
96.1x,

n
96.1x

If the assumption of normality does not hold but �n� is greater than 30, the
above 95% confidence interval still may be used for estimating population mean.
In case σ is unknown, it may be replaced by the corresponding unbiased
estimate of σ, namely S|, so long as �n� exceeds 30. However, we may face a
difficult situation in case σ is unknown and �n� does not exceed 30. This
problem has been discussed in the next unit (Unit-16). Similarly, 99%
confidence interval to µ is given by :








 σ
+

σ
−

n
58.2x,

n
58.2x

In case σ is unknown. The 99% confidence interval to µ is :









+−

n
S58.2x,

n
S58.2x

||

�(15.23)

in case σ is unknown and n > 30.
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Interval Estimation of Unknown Population Proportion

It can be assumed that when n is large and neither �p� nor (1�p) is small (one
may specify np ≥ 5 and n (1�p) ≥ 5), then the sample proportion p is

asymptotically normal with mean as P and 
n

)P1(P)p.(E.S −
= , P being the

unknown population proportion in which we are interested. The estimate of S.E.
(p) is given by :

n
)p1(p)p�.(E.S −

=

Hence, 95% confidence interval to p is given by :











 −
+

−
−

n
)p(p.p,

n
)p(p.p 19611961         �(15.24)

and 99% confidence interval to P is :











 −
+

−
−

n
)p1(p58.2p,

n
)p1(p58.2p �(15.25)

Let us consider the following illustrations to understand the procedure for
interval estimation.

Illustration 3

In a random sample of 1,000 families from the city of Delhi, it was found that
the average of income as obtained from the sample is Rs. 2,000/-, it is further
known that population S.D. is Rs. 258. Find 95% as well as 99% confidence
interval to population mean.

Solution: Let x denote income of the people of Delhi city. If µ denotes
average income of people dwelling in Delhi, then 95% confidence interval to µ
is:








 σ
+

σ
−

n
96.1x,

n
96.1x

and 99% confidence interval to µ is :








 σ
−

σ
−

n
58.2x,

n
58.2x

Where x  = Sample mean; n = Sample size, and σ = Population standard
deviation.

In our case,

x = Rs. 2000, n = 1000, σ = Rs. 258

       1000
25896.12000.Rs

n
96.1x ×−=

σ
−∴ = Rs. 1984.01

1000
25896.12000.Rs

n
96.1x ×+=

σ
+ = Rs. 2015.99

>
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1000
25858.22000.Rs

n
58.2x ×−=

σ
−  = Rs. 1979

and 1000
25858.22000.Rs

n
58.2x ×+=

σ
+  = Rs. 2021

Hence we have

95% confidence interval to average income for the people of Delhi = [Rs.
1984.01 to Rs. 2015.99] and 99% confidence interval to average income for the
people of Delhi = [Rs. 1979 to Rs. 2021].

Illustration 4

Calculate the 95% and 99% confidence limits to the average life of fluorescent
lights produced by Indian Electricals.

Solution: Since σ, the population standard deviation is unknown and n = 32
(> 30), we replace σ by S|, the sample S.D. with divisor as (n�1) in our
previous example and get 95% confidence interval to µ is:












+−

n
S96.1x,

n
S96.1x

||

Similarly, 99% confidence interval for µ = 







+−

n
S58.2x,

n
S58.2x

||

Where, x  = Sample mean = 4985 hours, n = Sample size = 32; and

|S  = Sample S.D. with (n�1) division = 86.0868 hours (as computed
     earlier).

∴ 
32
0868.8696.14985

n
S96.1x

|

×−=− = 4955.17 hours

  
32
0868.8696.14985

n
S96.1x

|

×+=+  = 5014.83 hours

  
32
0868.8658.24985

n
S58.2x

|

×−=−  = 4945.74 hours

32
0868.8658.24985

n
S58.2x

| ×
+=+  = 5024.26 hours

∴ 95% Confidence Interval to the average life of lights = [4945.17
   hours, 5014.83 hours].

   99% Confidence Interval to the average life of lights = [4945.74
   hours, 5024.26 hours].

Illustration 5

While interviewing 350 people in a city, the number of smokers was found to
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be 70. Obtain 99% lower confidence limit and the corresponding upper
confidence limit to the proportion of smokers in the city.

Solution: As discussed in the previous section, 99% Lower Confidence Limit
to P, the proportion of smokers in the city is given by:

n
)p1(p58.2p −

−

and 99% Upper Confidence Limt to P is:

n
)p1(p58.2p −

+

provided np ≥ 5 and np (1�p) ≥ 5.

In this case x = no. of smokers = 70

n = no. of people interviewed = 350

∴ 2.0
350
70

n
xp ===

As np = 350 × 0.2 = 70 and n (1�p) = 350 × 0.8 = 280 are rather large, we
can apply the formula for 99% Confidence Limit as mentioned already.

∴  99% Lower Confidence Limit to P is :

1786.00214.02.0
350

)2.01(2.096.12.0 =−=
−×

×−

99% Upper Confidence Limit to P is :

2214.00214.02.0
350

)2.01(2.096.12.0 =+=
−×

×+

Hence 99% Lower Confidence Limit and 99% Upper Confidence Limit for the
proportion of smokers in the city are 0.1786 and 0.2214 respectively.

Illustration 6

In a random sample of 19586 people from a town, 2358 people were found to
be suffering from T.B. With 95% Confidence as well as 98% Confidence, find
the limits between which the percentage of the population of the town suffering
from T.B. lies.

Solution: Let x be the number of people suffering from T.B. in the sample and
�n� as the number of people who were examined. Then the proportion of
people suffering from T.B. in the sample is given by:

1204.0
19586
2358

n
xp ===

As np = x = 2358 and n (1�p) = n�np = n�x

 = 19586�2358 = 17228

are both very large numbers, we can apply the formula for finding Confidence
Interval as mentioned in the previous section. Thus 95% Confidence Interval to
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P, the proportion of the population of the town suffering from T.B., is given by :











 −
+

−
−

n
)p1(p96.1p,

n
)p1(p96.1p

       










 −×
+

−×
−=

19586
)1204.01(1204.096.11204.0,

19586
)1204.01(1204.096.11204.0

= [0.1204 � 0.0045,   0.1204  +  0.0045] = [0.1181,   0.1227]

In a similar way, 98% Confidence Interval to P is given by:











 −
+

−
−

n
)p1(p33.2p,

n
)p1(p33.2p











 −×
+

−×
−=

19856
)1204.01(1204.033.21204.0,

19856
)1204.01(1204.033.21204.0

= [0.1150, 0.1258]

Thereby, we can say with 95% confidence that the percentrage of population in
the town suffering from T.B. lies between 11.81 and 12.27 and with 98%
confidence that the percentage of population suffering from T.B. lies between
11.50 and 12.58.

Illustration 7

A famous shoe company produces 80,000 pairs of shoes daily. From a sample
of 800 pairs, 3% are found to be of poor quality. Find the limits for the number
of substandard pair of shoes that can be expected when the Confidence Level
is 0.99.

Solution: Let p be the sample proportion of defective shoes as produced by
the shoe company. In this case sample size (n) is 800 and population size (N)
is 80,000. Since the population is very large, we do not apply finite population
correction.

p = 3% = 0.03

0060.0
800

)03.01(03.0
n

)p1(p)p�(.E.S =
−

=
−

=∴

Thus 99% Lower Confidence Limit to P, the proportion of defective shoes in
the daily production of the shoe company is :

p � 2.58  )p�(.E.S

= 0.03�2.58 × 0.006 = 0.01452

similarly 99% Upper Confidence Limit to p is :

)P�(.E.S�58.2P + = 0.03 + 2.58 × 0.006 04548.0=

Hence, the Lower limit to the number of substandard i.e., defective pairs of
shoes at 99% Level of Confidence = N × 0.01452.

= 80,000 × 0.01452 = 1161.6 = (approximately) 1162

>

>
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The Upper Limit to the number of substandard, pairs of shoes at 99% Level of
Confidence is

80,000 × 0.04548 = 3638.4 = (approximately) 3638

Self Assessment Exercise B

1) State with reasons, whether the following statements are true or false.

a) Confidence Interval provides a range of values that may not contain the
parameter.

b) Confidence Interval is a function of Confidence Co-efficient.

c) 95% Confidence Interval for population mean is )x(.E.S96.1x ± .

d) While computing Confidence Interval for population mean, if the population
S.D. is unknown, we can always replace it by the corresponding sample S.D.

e) 99% Upper Confidence Limit for population proportion is 
n

)p1(p96.1p −
+ .

f) Confidence co-efficient does not contain Lower Confidence Limit and Upper
Confidence Limit.

g) If np ≥ 5 and np (1�p) ≥ 5, one may apply the formula  
n

)p1(pzp α
−

± for

computing Confidence Interval for population proportion.

h) The interval )x(.E.S3±µ covers 96% area of the normal curve.

2)     Differentiate between Point Estimation and Interval Estimation.

...............................................................................................................

..............................................................................................................

3) Distinguish between Confidence Limit and Confidence Interval.

...............................................................................................................

...............................................................................................................

...............................................................................................................

4. Out of 25,000 customer�s ledger accounts, a sample of 800 accounts was taken
to test the accuracy of posting and balancing and 50 mistakes were found.
Assign limits within which the number of wrong postings can be expected with
99% confidence.

...............................................................................................................

...............................................................................................................

...............................................................................................................

5. A sample of 20 items is drawn at random from a normal population comprising
200 items and having standard deviation as 10. If the sample mean is 40,
obtain 95% Interval Estimate of the population mean.

...............................................................................................................

...............................................................................................................

...............................................................................................................
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6) A new variety of potato grown on 400 plots provided a mean yield of 980
quintals per acre with a S.D. of 15.34 quintals per acre. Find 99% Confidence
Limits for the mean yield in the population.

................................................................................................................

................................................................................................................

................................................................................................................

15.5 TESTING HYPOTHESIS – INTRODUCTION

Referring to the problem of the status to be given to Delhi City, one of the
criteria for determining the status would be the average income of the people
of Delhi. Let us suppose that if �µ�, the average income of the people is Rs.
3,000 per month, then Delhi would belong to the group of top cities. In order to
estimate �µ�, we take a random sample of people living in that city and
compute x , the sample mean. If x  is in the neighbourhood of Rs. 3,000, then
we have no hesitation in declaring the status of Delhi as one belonging to the
top grade. But the most important question would be as to what difference
between the sample mean and Rs. 3000 (population mean) can be accepted as
the difference due to only sampling fluctuations.

In order to answer this question, let us familiarise ourselves with a few terms
associated with the problem. A statement like �The average income of the
people belonging to the city of Delhi is Rs. 3,000 per month� is known as a
null hypothesis. Thus, a null hypothesis may be described as an assumption or
a statement regarding a parameter (population mean, �µ�, in this case) or about
the form of a population. The term �null� is used as we test the hypothesis on
the assumption that there is no difference or, to be more precise, no significant
difference between the value of a parameter and that of an estimator as
obtained from a random sample taken from the population. A hypothesis may
be simple or composite.

A simple hypothesis is one that specifies the population distribution
completely. Thus testing µ = 3,000 is a simple hypothesis if the population
standard deviation (σ) is known.

A composite hypothesis is one that does not specify the population
completely. Testing µ = 3,000 when σ is unknown is a composite hypothesis as
it does not specify the population completely. A null hypothesis is denoted by
H0. Thus we may write :

H0 : µ = 3,000

i.e., the null hypothesis is that the population mean is Rs. 3,000. Generally, we
write

H0 : µ = µ0

i.e., the null hypothesis is that the population mean is µ, whereas µ0 may be
any value as specified in a given situation.

Obviously a null hypothesis (H0) is to be tested against an appropriate
alternative hypothesis (H1). Any hypothesis that contradicts a null
hypothesis is known as an alternative hypothesis. If the null hypothesis is
rejected, the alternative hypothesis is accepted. Procedures enabling us to
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decide whether to accept or reject a hypothesis is known as test of hypothesis
or test of significance or decision rule. Thus, the entire process of hypothesis
testing is either to reject or accept H0 only.

In the present problem, one may argue that since many people of Delhi city are
living in the slums and even on the pavements, the average income should be
less than Rs. 3000. So one alternative hypothesis may be :

H1 : µ < 3,000 i.e., the average income is less than Rs. 3,000 or
symbolically:

    or, H1 : µ < µ0 i.e., the population mean (µ) is less than µ0.

Again one may feel that since there are many multistoried buildings and many
new models of vehicles run through the streets of the city, the average income
must be more than Rs. 3,000. So another alternative hypothesis may be :

H2 : µ > 3000 i.e., the average income is more than Rs. 3,000.

or, H2 : µ > µ0 i.e., the population mean is more than µo.

Lastly, another group of people may opine that the average income is
significantly different from µ0. So the third alternative could be :

H : µ ≠ 3000 i.e., the average income is anything but Rs. 3,000.

or, H : µ ≠ µ0 i.e., the population mean is not µ0.

15.6 THEORY OF TESTING HYPOTHESIS —
LEVEL OF SIGNIFICANCE, TYPE-I AND
TYPE-II ERRORS AND POWER OF A TEST

In order to take a decision about acceptance or rejection of a null hypothesis,
let us consider the theory involving testing of hypothesis. Suppose that we have
a random sample of size �n� taken from a population characterized by an
unknown parameter �θ�. We denote the n sample observations by x = (x1, x2,
x3, �xn) and we would like to test

H0 : θ = θ0 against

H1 : θ = θ1

If n = 2, then x = (x1, x2) can be represented as a point in the 2-dimensional
plane taking, say x1, on the horizontal axis and x2 on the vertical axis. In a
similar way, it is possible to conceive x = (x1, x2, x3, �xn) as a point in the n-
dimensional plane. Consider all the possible samples of a fixed size �n�, i.e., NCn
in case of SRSWOR and Nn in the case of SRSWR, N denoting the population
size. Next we consider the sample space formed by all these points and let it
be denoted by Ω. We divide Ω into two parts ω and A = Ω � ω, the boundary
of ω is taken within A. We frame a simple rule which says that if the sample
point x falls on ω, we reject H0 and if x falls on A, we accept H0. ω is known
as the critical region or rejection region and A, as the acceptance region. At
this juncture, let us make one point clear. Acceptance of H0 does not mean
that H0 is always true. It just reflects the idea that on the basis of the given
data, there is not enough evidence to support the validity of H1. In a similar
manner rejection of H0 indicates the null hypothesis does not hold good in the
light of the given sample observations.
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Type-I and Type-II Errors
Now while testing H0 we are liable to commit two types of errors. In the first
case, it may be that H0 is true but x falls on ω and as such, we reject H0.
This is known as type-I error or error of the first kind. Thus type-I error is
committed in rejecting a null hypothesis which is, in fact, true. Secondly, it may
be that H0 is false but x falls on A and hence we accept H0. This is known as
type-II error or error of the second kind. So type-II error may be described as
the error committed in accepting a null hypothesis which is, in fact, false. The
two kinds of errors are shown in Table 15.3.

Table 15.3: Types of Errors in Testing Hypothesis

Real Situation                   Statistical decision based on sample
                          H0 Accepted                    H0 Rejected

H0 True Right decision Type-I error

H0 False Type-II error Right decision

It is obvious that we should take into account both types of errors and must try
to reduce them.Since committing these two types of errors may be regarded as
random events, we may modify our earlier statement and suggest that an
appropriate test of hypothesis should aim at reducing the probabilities of both
types of errors. Let �α� (read as �alpha�) denote the probability of type-I error
and �β� (read as �beta�) the probability of type-II error. thus by definition, we
have

α = The probability of the sample point falling on the critical region when H0 is
true i.e., the value of θ is θ0 = P (x ∈ ω  | θ0) �(15.26)

and β = The probability of the sample point falling on the critical region when
H1 is true, i.e., the value of θ is θ1

= P (x ∈ A | θ1) � (15.27)

Surely, our objective would be to reduce both type-I and type-II errors. But
since we have taken recourse to sampling, it is not possible to reduce both
types of errors simultaneously for a fixed sample size. As we try to reduce �α�,
β increases and a reduction in the value of β results in an increase in the value
of �α�. Thus, we fix α, the probability of type-I error to a given level (say, 5
per cent or 1 per cent) and subject to that fixation, we try to reduce β,
probability of type-II error. �α�  is also known as size of the critical region. It
is further known as level of significance as �α� constitutes the basis for making
the difference (θ � θ0) as significant. The selection of �α� level of significance,
depends on the experimenter.

Power of a Test: By definition, we have

β = P (x ∈ A | θ = θ1) [from 15.27]

: 1� β = 1 � P  (x ∈ A | θ = θ1)

      = P (x ∈ω  | θ = θ1) [from 15.26]

[Since θ1 may fall either on ω or A,

therefore, P (x ∈ ω  | θ = θ1) + P (x ∈ A | θ = θ1) = 1

and we have 1�P (x ∈ A | θ = θ1) = P (x ∈ ω  | θ = θ1)]
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Now P (x ∈ ω  | θ = θ1) is the probability of rejecting H0 when H0 is false
and the alternative hypothesis H1 is true which should be the desirable property
of an appropriate test. It is obvious that a low value of β would ensure a high
value of (1�β). Hence we try to minimize β, the probability of type-II error, as
the minimization of β ensures the maximization of (1�β). The expression (1�β)
serves as an indicator of the validity of the test as a very high value of (1�β)
indicates that the test is doing fine in its endeavour to reject a false hypothesis.
Hence (1�β) is known as power of the test as it tells us how well the test
under consideration is performing when the null hypothesis is not true. It is
obvious that we should try to make our test as powerful as possible subject to
a fixed value of α . One may regard power of a test as a function of θ. The
function P (θ) = 1�β (θ) is known as the power function of the test. The
curve obtained by plotting P (θ) against θ is known as power curve. Look at
the following figure 15.5 which exhibits a power curve.

Fig. 15.5: Power Curve of a Test

15.7 TWO-TAILED AND ONE-TAILED TESTS

In order to test the null hypothesis H0 : θ = θ0 against a plausible alternative
hypothesis, let us suppose that we find a statistic T which is a sufficient
estimator of θ. We assume further that, based on a random sample taken from
the population characterized by an unknown parameter θ, it is possible to find a
function of T and θ and let u = u (T, θ) by such a function. T is known as
test statistic for testing H0 : θ = θ0. Lastly let us assume that when θ = θ0,
u0 = u (T, θ0)  i.e., u0 is the value of �u� under H0 (i.e., assuming the null
hypothesis to be true). Based on the sampling distribution of the test statistic u
under H0, it may be possible to find 4 values of u, namely, uα/2, u(1-α/2),

 uα and
u(1-α ) for a fixed level of significance α, such that :

P (u0 ≥ uα/2 ) = 
2
α

� (15.28)

P (u0 ≤ u(1−α/2 ) = 
2
α

� (15.29)

P (u0 ≥ u α  ) = α � (15.30)
P (u0 ≤ u(1− α)) = α � (15.31)

uα  may be described as the upper α-point of the distribution of u and u(1-α)  as
the corresponding lower α-point.

Two-tailed test: Adding (15.28) and (15.29), we get :

P (u0 ≥ uα/2) + P (u0 ≤ u(1-α/2)) = α � (15.32)

i.e., the probability that u0 would exceed uα/2 or u0 is less than u (1-α/2) is α.

1.0

P(θ)

0
θ
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In order to test H0 : θ = θ0 against H1 : θ ≠ θ0, if we select a low value of α,
say α = 0.01, then (15.32) suggests that the probability u0 is greater than ua/2 or
u0 is less than u(1-α/2)is 0.01 which is pretty low. So on the basis of a random
sample drawn from the population, if it is found that u0 is greater than ua/2 or u0
is less than u(1�α/2), then we have rather strong evidence that H0 is not true.
Then we reject H0 :  θ = θ0 and accept the alternative hypothesis H1 : θ ≠ θ0.
As shown in the following Figure 15.6, here the critical region lies on both tails
of the probability distribution of u.

Fig. 15.6: Critical region of a two-tailed Test

If the sample point x falls on one of the two tails, we reject H0 and accept H1
: θ ≠ θ0. The statistical test for H0 : θ = θ0 against H1 : θ ≠ θ0 is known as
both-sided test or two-tailed test as the critical region, �ω� lies on both sides of
the probability curve, i.e., on the two tails of the curve. The critical region is
ω : u0 ≥ uα/2 and ω : u0 ≤ u(1-α/2). It is obvious that a two-tailed test is
appropriate when there are reasons to believe that �u� differs from θ0
significantly on both the left side and the right side, i.e., the value of the test
statistic �u� as obtained from the sample is significantly either greater than or
less than the hypothetical value.

For testing the null hypothesis H0 : µ = 3000, i.e., the average income of the
people of Delhi city is Rs. 3000, one may think that the alternative hypothesis
would be H1 : µ ≠ 3000 i.e., the average income is not Rs. 3000 and as such,
we may advocate the application of a two-tailed test. Similarly, for testing the
null hypothesis that the average life of lights produced by Indian Electricals is
5,000 hours against the alternative hypothesis that the average life is not 5,000
hours, i.e., for testing H0 : µ = 5,000 against H1 : µ ≠ 5,000, we may prescribe
a two-tailed test. In the problem concerning the health of city B, we may be
interested in testing whether 20% of the population of city B really suffers from
T.B. i.e., testing H0 : P = 0.2 against H1 : P ≠ 0.2 and again a two-tailed test
is necessary and lastly regarding the harms of smoking, we may like to test H0
: P = 0.3 against H1 : P ≠ 0.3.

Right-tailed Tests
We may think of testing a null hypothesis against another pair of alternatives. If
we wish to test H0 : θ = θ0 against H1 : θ > θ0, then from (15.30) we have
P (u0 ≥ uα) = α. This suggests that a low value of α, say α = 0.01, implies
that the probability that u0 exceeds uα  is 0.01. So the probability that u0
exceeds uα is rather small. Thus on the basis of a random sample drawn from
this population if it is found that u0 is greater than uα, then we have enough
evidence to suggest that H0 is not true. Then we reject H0 and accept H1. This
is exhibited in Figure 15.7 as shown below:

100 (1−α) %  area
Acceptance Region

Critical Region
ω : u0  ≤ u (1-α/2)

50 α % area u(1- α /2)
u α /2 50 α % area

Critical Region
ω : u0  ≥ u α/2
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Fig. 15.7: Critical region of a right-tailed Test

As shown in figure 15.7, the critical region lies on the right tail of the curve.
This is a one-sided test and as the critical region lies on the right tail of the
curve, it is known as right-tailed test or upper-tailed test. We apply a right-
tailed test when there is evidence to suggest that the value of the statistic u is
significantly greater than the hypothetical value θ0. In case of testing about the
average income of the citizens of Delhi, if one has prior information to suggest
that the average income of Delhi is more than Rs. 3,000, then we would like to
test H0 : µ = 3,000 against H1 : µ > 3,000 and we select the right-tailed test.
In a similar manner for testing the hypothesis that the average life of lights by
Indian Electricals is more than 5,000 hours or for testing the hypothesis that
more than 20 per cent suffer from T.B. in city B or for testing the hypothesis
that the per cent of smokers in town C is more than 30, we apply the right-
tailed test.

Left-tailed test
Lastly, we may be interested to test H0 : θ = θ0 against H2 : θ < θ0.From
(15.31), we have P (u0 ≤ u1�α) = α. Choosing α = 0.01, this implies that the
probability that u0 would be less than uα is 0.01, which is surely very low. So, if
on the basis of a random sample taken from the population, it is found that u0
is less than u1-α, then we have very serious doubts about the validity of H0. In
this case, we reject H0 and accept H2 : θ < θ0. This is reflected in Figure 15.8
shown below.

Fig. 15.8: Critical Region of a Left-tailed Test

The test for H0 : θ = θ0 against H2 : θ < θ0 is another one-sided test and as
the critical region lies on the left tail of the curve, this is known as a left-

100 (1−α) %  area
Acceptance Region

Critical Region
ω : u0  ≤ u (1-α)

u(1- α )
100 α %

area

100 (1−α) %  area
Acceptance Region

u α 100 α % area

Critical Region
ω : u0  ≥ u α
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tailed test or a lower-tailed test. We apply a left-tailed test when there is
enough indication to suggest that the value of the test statistic �u� is significantly
less than the hypothetical value. Then for determining the status of Delhi city, if
somebody suggests with evidence that the average income is less than Rs.
3,000 and as such Delhi should not be regarded as a top grade city, then we
are to test H0 : µ = 3000 against H1 : µ < 3000, which is a left-tailed test. We
may further note that we apply left-tailed test when we would like to test the
hypothesis that the average life of lights of Indian Electricals is less than 5,000
hours or less than 20 per cent are suffering from T.B. in city B or less than 30
per cent are smokers in town C.

15.8 STEPS TO FOLLOW FOR TESTING
HYPOTHESIS

While testing hypothesis, one must go through the following steps.

1) Set up the null hypothesis  H0 : θ = θ0 and one of the alternative hypothesis
H :  θ ≠ θ0 or  H1 : θ > θ0 or  H2 : θ < θ0 depending upon the problem.
Selecting the proper alternative plays a significant role in decision making in
connection with testing of hypothesis.

2) Choose the appropriate test statistic �u� and sampling distribution of �u� under
H0. In most cases �u� follows a standard normal distribution under H0 and
hence Z-test can be recommended in such a case.

3) Select α, the level of significance of the test if it is not provided in the given
problem. In most cases, we choose α = 0.05 and α = 0.01 which are known as
5% level of significance and 1% level of significance.

4) Define critical region ω, based on the alternative hypothesis. For testing
H0 : θ = θ0 against both-sided alternative H1 : θ ≠  θ0, the critical region is given
by ω : u0 ≥ uα/2 and ω : u0 ≤ u(1-α/2). Similarly, the critical region for the right-
sided alternative is given by ω : u0 ≥ uα and the critical region for the left-sided
is given by ω : u0 ≤ u1-α

.

5) Obtain the value of u0 on the basis of the given sample observations.

6) Reject H0 if u0 falls on ω. Otherwise accept H0.

7) Draw your own conclusion in very simple language which should be understood
even by a layman.

15.9 TESTS OF SIGNIFICANCE FOR POPULATION
MEAN – Z-TEST FOR VARIABLES

Let us assume that we have taken a random sample of size �n� from a normal
population with mean as µ and standard deviation as σ. Let the sample
observations be denoted by x1, x2, x3, �xn. While testing for the unknown
population mean µ, we are to consider the following cases.

Case 1: When the standard deviation σ is known. We want to test H0 : µ =
µ0 against one of the following alternative hypothesis.

H : µ ≠ µ0  or,

H1 : µ > µ0  or,

H2 : µ < µ0.
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As we have discussed in Section 15.2, the best statistic for the parameter µ is
x . It has been proved in that Section, µ=)x(E .

n
)x(.E.S σ

=

As such the test statistic :

n/
x

)x.(E.S
)x(Exz

σ
µ−

=
−

=

is a standard normal variable. Under H0, i.e., assuming the null hypothesis to be
true,

σ
µ−

=
)x(n

z 0
0  is a standard normal variable. As such, the test is known as

standard normal variate test or standard normal deviate test or Z-test. In order
to find the critical region for testing H0 against H from (15.28) and (15.29), we
find that :

2
)uu(P

,2/(0
α

=≥ α

and
2

)uu(P
,2/1(0

α
=≤ α−

If we denote the standard normal variate by Z, and the upper α-point of the
standard normal distribution by Zα, and by Z(1�α/2) = �Zα/2, (as the standard
normal distribution is symmetrical about 0), the lower α-point of the standard
normal distribution, then the above two equations are reduced to :

2
)ZZ(P 2/0

α
=≥ α ��(15.33)

and
2

)ZZ(P 2/0
α

=−≤ α ��(15.34)

From (15.33), we have:

2
)ZZ(P1 2/(0

α
=<− α

or
2

)Z(1 2/
α

=φ− α

or
2

1)Z( 2/
α

−=φ α

choosing 975.0025.01)Z(,05.0 025.0 =−=φ=α

or, )96.1()Z( 0025.0 φ=φ [from Section 15.4]

Thus, Z0.025 = 1.96

Hence from (15.33) and (15.34), we have

P (Z0  ≥ 1.96) = 0.025

and P  (Z0  ≤ �1.96) = 0.025
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Combining these two equations, we get  05.0)96.1z(P 0 =≥ ��[15.35]

Thus for testing H1: µ ≠ µ0, the critical region is given by :

96.1z: o ≥ω

When the level of significance is 5% and

σ
µ−

=
)x(n

Z 0
0 ��(15.36)

Proceeding in a similar manner, the critical region for the two-tailed test at 1%
level of significance is given by :

58.2z: o ≥ω ��(15.37)

Now if we decide to test H0 against the alternative hypothesis H1 : µ > µ0,
from (15.30), we have

P (Z0 ≥ Zα) = α

or, 1�P (Z0 < Zα) = α

or, α=φ− α )Z(1

or,
2

)Z(1 2/
α

=φ− α �� (15.38)

Putting α = 0.05 in (15.38), we get

)645.1(95.0)Z( 05.0 φ==φ �� [from Section 15.4]

Hence the critical region for this right-tailed test at 5% level of significance is :
ω : Z0 ≥ 1.645

Similarly the critical region at 1% level of significance would be :
ω : Z0 ≥ 2.35

Finally if we make up our minds to test H0 against H2 :  µ < µ0, then from
(15.35), we get

P (Z0 ≤ �Zα) = α

or, α=−φ α )Z(

or, 1− α=φ α )Z(

or, α−=φ α 1)Z(

Thus as before, putting α = 0.05, we get Zα = 1.645

And as such the critical region for this left-tailed test at 5% level of
significance is:

ω : Z0 ≤ �1.645

The critical region, when the level of significance is 1%, is :

ω : Z0 ≤ �2.35

Figures 15.9 and 15.10 describe critical regions at 5% and 1% level of
significance for Two-tailed Tests. Right-tailed tests are shown in Figures 15.11
and 15.12 and left-tailed tests are exhibited in Figures 15.13 and 15.14.
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95 %     Area
Acceptance Region

1.645
5 % Area

Critical Region
ω : Z0  ≥ 1.645

µ0

95 %     area
Acceptance Region

Critical Region
ω : Z0  ≤ �1.96

2.5 % area �1.96 1.96
2.5 % area

Critical Region
ω : Z0  ≥ 1.96

µ0

99 %     Area
Acceptance Region

Critical Region
ω : Z0  ≤ �2.58

0.5 % area �2.58 2.58
0.5 % area

Critical Region
ω : Z0  ≥ 2.58

µ0

         Figure 15.9: Two-tailed Critical Region for Testing Population Mean at 5% Level of Significance

Figure 15.10: Two-tailed Critical Region for Testing Population Mean at 1% Level of  Significance.

Figure 15.11: Right-tailed Critical Region for Testing Population Mean at 5% Level of Significance
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Figure 15.12: Right-tailed Critical Region for Testing Population Mean at 1% Level of
Significance

Figure 15.13: Left-tailed Critical Region for Testing Population Mean at 5% Level of
Significance

99 %     Area
Acceptance Region

2.35
1 % area

Critical Region
ω : Z0  ≥ 2.35

µ0

99 %     Area
Acceptance Region

Critical Region
ω : Z0  ≤ �2.35

1 % area �2.35 µ0

95 %     Area
Acceptance Region

Critical Region
ω : Z0  ≤ �1.645

5 % area �1.645 µ0

Figure 15.14: Left-tailed Critical Region for Testing Population Mean at 1% Level of Significance

Case II: When the population standard deviation is unknown.

In order to test for population mean, we replace σ by its unbiased estimator.

1n
)xX(S

2
i|

−
−

=
∑
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in the test statistic used in Case-I, provided we have a sufficiently large sample
(as discussed earlier n should exceed 30). Thus we consider

|
0

0 s
)x(nZ µ−

=

Z0 is a standard normal variable. As before for testing H0 : µ = µ0 against
both-sided alternative H : µ ≠ µ0, the critical region at 5% level of significance
would be given by :

96.1|Z| 0 ≥ω

Also the critical region at 1% level of significance would be

5820 .|Z|: ≥ω

Further the critical region at 5% level of significance for the right-sided
alternative H1: µ > µ0 would be :

64510 .|Z|: ≥ω

and ω : Z0 ≥ 2.33 when the level of significance is 1%.

Lastly the critical region for the left-sided alternative H2 : µ > µ0 would be
provided by :

ω : Z0 ≤ �1.645

and ω : Z0 ≤ �2.33 when α = 0.05 and 0.01 respectively.

15.10 TESTS OF SIGNIFICANCE FOR
POPULATION PROPORTION – Z-TEST FOR
ATTRIBUTES

We consider now the problem of testing H0 : P = P0, i.e., testing whether the
proportion of units in the population possessing a certain characteristic is P0,
i.e., a specified value.

For example, if we want to test whether a fresh coin just coming out from a
mint is unbiased, then we are to test H0 : P = 0.5. Similarly, the problem of
testing whether 20% population of city B is suffering from T.B amounts to
testing Ho : P = 0.2 or testing whether 30% population of a town are smokers
is equivalent to testing H0 : P = 0.3.

As discussed earlier, the number of units in the population having a certain
characteristic follows Binomial Distribution with parameters �n� and P. If �n� is
large such that both nP and n(1�P) are not less than 5, then we can
approximate a Binomial Distribution by a Normal Distribution with mean as µ =
nP and variance as σ2 = nP (1�P).

Hence, it follows that the sample proportion (p) = 
n
x

follows normal distribution

with mean as P0 and S.D. as 
n

)P1(P 00 −
under H0.
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)P1(P
)Pp(n

n
)P1(P

PpZThus
00

0

00

0
0

−
−

=
−

−
=

 

is a standard normal variate and as such we can apply Z-test for attributes.

Hence, as discussed earlier, the critical region for testing H0 : P = P0 against
two-sided alternative H : P ≠ P0 would be given by :

ω : |Z0| ≥ 1.96 when the level of significance is 5% and by

ω : |Z0| ≥ 2.58 at 1% level of significance.

The critical regions for the right-sided alternative H1 : P > P0 at 5% level of
significance and 1% level of significance would be:

ω : Z0 ≥ 1.645 and

ω : Z0 ≥ 2.33 respectively.

Lastly when it comes to testing H0 against the left-sided alternative
H2 : P < P0 ,

We have the critical regions as ω : Z0 ≤ �1.645 when α  = 0.05

    and ω : Z0 ≤ �2.33  when α  = 0.01

Let us consider the following illustrations to understand the application of this
concept.

Illustration 8

The mean breaking strength of the cables supplied by a manufacturer is 1,900
units with a standard deviation of 110 units. By a new technique in the
manufacturing process, the manufacturer claims, the breaking strength of the
cables supplied by him has increased. In order to test his claim, a sample of 50
cables is tested. It is found that the mean breaking strength, as obtained from
the sample, is 1926. Can you support the claim both at 5% and 1% levels of
significance?

Solution: Let the mean breaking strength of the cables be denoted by x .
Since the sample size (n) is 50 which is more than 30, we can apply Z-test.
Then we are to test,

H0 : µ = 1900 i.e., the mean breaking strength of the cables is 1900
units

Against H1 : µ > 1900; i.e., the mean breaking strength has increased

we use 
σ
−

=
)1900x(nZ0

The critical region for this right-sided alternative is given by :

ω : Z0 ≥ 1.645 at 5% level of significance and

ω : Z0 ≥ 2.33 at 1% level of significance

As per given data, n = 50, x  = 1926, σ = 110

671.1
110

)19001926(50Z0 =
−

=
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Thus, we reject H0 at 5% level of significance but accept the null hypothesis at
1% level of significance. On the basis of the given data, we thus conclude that
the manufacturer�s claim is justifiable at 5% level of significance but at 1%
level of significance, we infer that the manufacturer has been unable to produce
cables with a higher breaking strength.

Illustration 9

A random sample of 500 flower stems has an average length of 11 cm. Can
this be regarded as a sample from a large population with mean as 10.8 cm
and standard deviation as 2.38 cm?

Solution: Let the length of the stem be denoted by x. Assume that µ denotes
the mean of stems in the population. The sample size 500 being very large, we
apply Z-test for testing H0 : µ = 10.8, i.e., the population mean is 10.8 cm.
against H : µ ≠ 108, i.e., the population mean is not 10.8.

As such we consider, as test statistic :

σ
−

=
)8.10x(nZ0

and choosing the level of significance as 5%, we note that the critical region is :

ω : |Z0| ≥ 1.96

as per given data,

m = 500,    x  = 11 cm,    σ = 2.38 cm

∴   879.1
38.2

)8.1011(500Z0 =
−

=

Thus we accept H0. We conclude that on the basis of the given data, the
sample can be regarded as taken from a large population with mean as 10.8
cm and standard deviation as 2.38 cm.

Illustration 10

A manufacturer of batteries asserts that the batteries made by him have a
mean life of 650 hours with a standard deviation of 12.83 hours. Ten batteries
were tested and the length of life of the batteries was recorded in hours as
follows:

623,   648,   672,   685,   692,   650,   649,   666,   638,   629

Examine whether the manufacturer was right in his assertion.

Solution: We assume that x, the length of battery-life is normally distributed
with mean as 650 hours and standard deviation as 12.83 hours. We are
interested in testing H0 : µ = 650 i.e., the average life is less than 650 hours
against H1 : µ < 650, i.e., the average life is less than 650 hours.

We consider
σ
−

=
)650x(nZ0
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and recall that the critical region at 1% level of significance (selecting α =
0.01) for this left-tailed test is given by

ω : Z0 < �2.33

since n = 10, σ = 12.83 hours, and

hours2.655
10

629  638 666 649 650 692   685  672  648  623x =
+++++++++

=

282.1
83.12

)6502.655(10Z0 =
−

=∴

As this does not fall in the critical region, H0 is accepted. Thus on the basis of
the given sample, we conclude that the manufactuer�s assertion was right.

Illustration 11

The heights of 12 students taken at random from St. Nicholas College, which
has 1,000 students and a standard deviation of height as 10 inches, are
recorded in inches as 65,  67,  63,  69,  71,  70,  65,  68,  63,  72,  61 and 66.
Do the data support the hypothesis that the mean height of all the students in
that college is 68.2 inches?

Solution: Letting x stand for height of the students of St. Nicholas College, we
would like to test

H0 : µ = 68.2 i.e., the mean height is 68.2 inches against H : µ ≠ 68.2,
i.e. the mean height is not 68.2 inches.

The critical region for this two-tailed test is :

ω : |Z0| ≥ 1.96 when α = 0.05

ω : |Z0| ≥ 2.58 when α = 0.01

where )x(.E.S
2.68xZ0

−
=

In this case,

inches67.66
12

66  61  72  63 68 65 70 71   69  63  67  65x =
+++++++++++

=

n = sample size = 12; N = population size = 1000; σ = population S.D. = 10
inches

1N
nN

n
)x(.E.S

−
−σ

=

= 11000
121000

12
10

−
−

 = 2.9027 inches

9027.2
2.6867.66Z0

−
=∴ = 0.527

Looking at ω, we accept H0 at both 5% and 1% levels of significance. So on
the basis of the given data, we comment that the mean height of the students
of St. Nicholas is 68.2 inches.
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Illustration 12

A coin is tossed 950 times and heads appear 500 times. Does the result
support the hypothesis that the coin is unbiased? Select α = 0.01.

Solution: As explained in this section, we would denote by P the probability of
getting a head. So testing the hypothesis that the coin is unbiased amounts to
testing H0 : P = 0.05 against H : P ≠ 0.5, i.e., the coin is biased.

Since n = 950; nP0 = 950 × 0.5 = 475; and nP0 (1�P0) = 237.5, we can apply
Z-test for proportion. Thus we compute :

)5.01(5.0
)5.0p(nZ0 −

−
= and note that the critical region at 1% level of

significance for this two-tailed test is :

ω : |Z0| ≥ 2.58

As 5263.0
950
500

n
xp ===

176.1
5.0

)5.05263.0(950Z0 =
−×

=∴

So we accept H0. On the basis of the given data, we conclude that the coin is
unbiased.

Illustration 13

In a sample of 800 parts manufactured by a company, number of defective
parts was found to be 60. The company, however, claims that only 7% of their
product is defective. Apply an appropriate test to verify whether the
manufacturer�s claim is tenable.

Solution: Let �p� be the sample proportion of defectives and P, the proportion
of defective parts in the whole manufacturing process. Then we are to test

H0 : P = 0.07, i.e., the proportion of defective parts in the process is 7% as
claimed by the manufacturer against H1 : P > 0.07, i.e., the proportion of
defective parts is more than 7%.

We consider Z-test as nP0 = 800 × 0.07 = 56 as well as nP0 (1�p0) = 800 ×
0.07 × 0.93 = 52.09 are quite large.

If we select α = 0.05, then the critical region for this right-tailed test is :

ω : Z0 ≥ 1.645

We have, as given, 075.0
800
60

n
xp ===

93.007.0
)07.0075.0(800

93.007.0
)07.0p(nZ0 ×

−
=

×
−

=

= 0.5543, we ignore f.p.c as the population size is unknown.

Thus, Z0 falls on the acceptance region and we accept the null hypothesis. We
conclude that on the basis of the given information, the manufacturer�s claim is
valid.
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Illustration 14

A family-planning activist claims that more than 33 per cent of the families in
her town have more than one child. A random sample of 160 families from the
town reveals that 50 families have more than one child. what is your inference
? Select α = 0.01.

Solution: If �P� denotes the proportion of families in the town having more
than one child, then we want to test H0 : P = 0.33 against H1 : P > 0.33.

We consider )33.01(33.0
)33.0p(nZ0 −

−
= as test statistic and note that at 1% level

of significance the critical region is ω : Z0 ≥ 2.35.

Here, 3125.0
160
50p == , n = 160

4708.0
)33.01(33.0

)33.03125.0(160Z0 −=
−

−
=∴

Thus H0 is accepted and the claim of the activist is justifiable at 1% level of
significance on the basis of the given sample.

Self Assessment Exercise C

1)  Examine whether the following statements are true or false:

a) A statistical hypothesis is an assumption about some parameter.

b) A reduction of type-I error results in an increase in type-II error.

c) Power of a test is a function of type-I error.

d) Type-II error is committed when we reject a true null hypothesis.

e) Probability of type-I error is also known as the level of significance of the
test.

f) The critical region for the two-tailed test for population mean at 5% level of
significance is ω : |Z0| ≥ 2.58.

g) Z-test for population proportion is an exact test.

h) When the sample size is very large, any test can be approximated by a Z-
test.

2) Distinguish between TYPE-I and TYPE-II errors.

 .......................................................................................................................

 .......................................................................................................................

    .....................................................................................................................

3) Differentiate between one-tailed tests and two-tailed tests.

 .......................................................................................................................

    .....................................................................................................................

    ........................................................................................................................

4) A sample of 5 units is taken from a normal population having variance as 4 squared
units. the sample observations are 23, 32, 35, 28 and 30. Do the data suggest that
the population mean is 30 units? Test at 5% level of significance.
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 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

5) A producer making electronic components claims that not more than 2% of his
components are defective. A sample of 300 components resulted in 16
defectives. Would you support his view ?

 .......................................................................................................................

 ......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

6) The numbers of male and female births in a hospital during a month were found
to be 1980 and 1870 respectively. Do the data confirm to the hypothesis that the
sexes are born in the same ratio?

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

15.11 LET US SUM UP

Statistical inference is a method to throw some light on the unknown population
with the help of a sample drawn from it. There are two types of estimates
with respect to estimating a parameter. They are : a) point estimates; b)
interval estimates. We estimate a parameter with the help of a single value
known as Point Estimate or a pair of values, known as Interval Estimate.

In a somewhat different situation, some information about some characteristic(s)
of the population may be known and we would like to examine whether that
information holds good for the sample as well. This is known as Test of
hypothesis or test of Significance or Decision rule. While testing a hypothesis,
one is likely to commit two types of Errors. Type-I error is committed in
rejecting a true null hypothesis and Type-II error occurs when a false null
hypothesis is accepted. A good test aims at reducing �p�, the probability of
Type-II error, keeping α, the probability of type-I error at a fixed level. α is
also known as size of the test or the level of significance. The test procedure
comprises in finding the value of the test statistic assuming the null hypothesis
to be true and comparing this value to the critical value.

We have concluded our discussion by conducting tests for population mean and
population proportion under different types of alternative hypothesis.

15.12 KEY WORDS AND SYMBOLS USED

Alternative Hypothesis: A hypothesis contradicting a null hypothesis. It is
denoted by H or H1 or H2.

Consistency: T is a consistent Estimator of θ if E(T) → θ and V(T) → o for
large n.
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Critical Region or Rejection Region: The set of values of the test statistic
leading to the rejection of H0. It is a part of the sample space and is denoted
by ω, if the sample point falls on ω, we reject H0.

Efficiency: T is an efficient Estimator of θ if T has the minimum standard
error among all the estimators of θ for a fixed sample size.

Interval Estimation: Estimation of a parameter θ by a pair of values, say, t1
and t2, t1 < t2. t1 is known as Lower confidence Limit and t2 as Upper
Confidence Limit. The probability that [t1, t2] contains θ is known as confidence
co-efficient and denoted by (1�α).

95% confidence Interval to µ








 σ
+

σ
−=

n
96.1x,

n
96.1x

99% confidence Interval to µ








 σ
+

σ
−=

n
58.2x,

n
58.2x

where x = sample mean; σ = population S.D.; and n = sample size.

when σ is unknown, it can be replaced by

1n
)xX(s

2
i|

−
−

=
∑

 provided �n� exceeds 30.

Level of Significance: This is the probability of type-I error and is denoted by
α. Usually α is taken as .01 or 0.05 and accordingly we have 1% or 5% level
of significance.

Null Hypothesis: An assumption or statement regarding the parameter or the
form of a population distribution. A null hypothesis is denoted by H0.

Point Estimation: Estimation of an unknown parameter θ by a statistic T with
the help of a single value obtained from a random sample.

Power of a Test: Probability of rejecting a null hypothesis when it is false.
This is given by P(θ) = 1�β (θ) = 1-Probability of Type-II error.

Test statistic: A function of sample observations whose value, as computed
from a random sample, determines the acceptance or rejection of the null
hypothesis.

Type-I Error: Error committed in rejecting a true H0.

Type-II Error: Error committed in accepting a false H0.

Sufficiency: T is a sufficient estimator of θ if it contains all the information
about θ.

Standard Error (S.E.): S.E of a statistic T is the standard deviation of T as
obtained from its sampling distribution.

Unbiasedness and minimum variance: A statistic T is an unbiased estimator
of θ if the expectation of T is θ. T is an MVUE (Minimum variance unbiased
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estimator) for θ if T has the minimum variance among all the unbiased
estimators of θ.

Z-test for population mean: For testing H0: µ = µ0, test statistic is given by

σ
µ−

=
)x(nZ 0

0  If σ is unknown and n > 30, we replace σ by s| in the

expression for Z0.

Z-test for population proportion: For testing H0 : P = P0 we consider

)P1(P
)Pp(nZ

00

0
0

−
−

=  provided n is large,

where, p = sample proportion

Under the assumption that the null hypothesis is true, Z0 follows standard
normal distribution. At 5% level of significance, the critical region for the two-
tailed test is given by

ω : |Zo| ≥ 1.96

The critical region for the right-tailed test is

ω : Zo ≥ 1.645

and the critical region for the left-tailed test is

ω : Zo ≤ �1.645

Similarly when the level of significance is 1%, the critical region for the two-
tailed test is

ω : |Zo| ≥ 2.58

For the right-tailed test, the critical region is

ω : Zo ≥ 2.35

and that for the left-tailed test is

ω : Zo  ≤ �2.35

15.13 ANSWERS TO SELF ASSESSMENT
EXERCISES

A) 1. a) No, b) No. c) Yes, d) No e) Yes f) Yes, g) Yes,
    h) No, i) Yes j) Yes

4. x  = Rs. 966.20, S| = Rs. 60.98

5. p = 0.4767, S.E. (p) = 0.0166

6. µ� = 48.2222; σ�  = 3.4564

B) 1. a) No, b) Yes, c) Yes, d) Yes, e) No, f) No, g) Yes,

h) No.

4. 1010 to 2115

5. [35.8318,       44.1682]

6. [978.02 quintals, 981.98 quintals]

>
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C) 1. a) Yes, b) Yes, c) No, (d) No, e) Yes, f) No, g) Yes,

       h) Yes.

4. Yes,      Z0 = � 0.447

5. No, Z0 = 4.12

6. Yes, Z0 = 1.774

15.14 TERMINAL QUESTIONS/EXERCISES

1) Distinguish between Estimation and testing of hypothesis.

2) Explain the procedure for testing a statistical hypothesis.

3) Discuss the role of normal distribution in interval estimation and also in testing
hypothesis.

4) What is an MVUE ? Examine whether a sample mean is an MVUE.

5) Discuss how far the sample proportion satisfies the desirable properties of a
good estimator.

6) How do you proceed to set confidence limits to population mean ?

7) Describe how you could set confidence limits to population proportion on the
basis of a large sample.

8) Explain how you would test for population mean.

9) Describe the different steps for testing the significance of population proportion.

10) 15 Life Insurance Policies in a sample of 250 taken out of 60,000 were found to
be insured for less than Rs. 7500. How many policies can be reasonably
expected to be insured for less than Rs. 7500 in the whole lot at 99%
confidence level.

(Ans: 1278 to 5922)

11) A sample of 250 measurements of breaking strength of cotton threads provided
a mean of 235 gm and a S.D of 32 gm. Find 95% confidence limits to the mean
breaking strength.

(Ans: 231.033 gms, 238.967 gms)

12) A manufacturer of ball-point pens claims that a certain type of pen produced by
him has a mean writing life of 550 pages with a S.D. of 35 pages. A purchaser
selects 20 such pens and the mean life is found to be 539 pages. At 5% level of
significance should the purchaser reject the manufacturer�s claim ?

(Ans: Yes, Z0 = �2.30)

13) In a sample of 550 guavas from a large consignment, 50 guavas are found to be
rotten. Estimate the percentage of defective guavas and assign limits within
which 95% of the rotten guavas would lie.

[Ans: (i) 9.09%; (ii) 0.0668 to 0.1150]

14) A die is thrown 59215 times out of which six appears 9500 times. Would you
consider the die to be unbiased ?

(Ans: No, Z0 = � 4.113)

15) A sample of 50 items is taken from a normal population with mean as 5 and
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standard deviation as 3. The sample mean comes out to be 4.38. Can the
sample be regarded as a truly random sample?

(Ans: No, Z = �1.532)

16) A random sample of 600 apples was taken from a large consignment of 10,000
apples and 70 of them were found to be rotten. Show that the number of rotten
apples in the consignment with 95% confidence may be expected to be from
910 to 1,424.

17) The mean life of 500 bulbs, as obtained in a random sample manufactured by a
company, was found to be 900 hours with a standard deviation of 300 hours.
Test the hypothesis that the mean life is less than 900 hours. Select α = 0.05
and 0.01.

(Ans: Yes, Z0 = � 3.7268

Note: These questions/exercises will help you to understand the unit better.
Try to write answers for them. But do not submit your answers to the
university for assessment. These are for your practice only.

15.15 FURTHER READING
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within this unit.
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Hooda, R.P., 2000, Statistics for Business and Economics, Macmillan India Ltd.,
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Gupta, S.P., Statistical Methods, 1999, Sultan Chand & Sons: New Delhi.

Gupta, C.B., and Vijay Gupta, 1998, An Introduction to Statistical Methods, Vikas
Publishing House Pvt. Ltd., New Delhi.


